If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-40x-42=0
a = 1; b = -40; c = -42;
Δ = b2-4ac
Δ = -402-4·1·(-42)
Δ = 1768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1768}=\sqrt{4*442}=\sqrt{4}*\sqrt{442}=2\sqrt{442}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-2\sqrt{442}}{2*1}=\frac{40-2\sqrt{442}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+2\sqrt{442}}{2*1}=\frac{40+2\sqrt{442}}{2} $
| .2w+3=4w-5 | | A+BxC=D | | 5t=7t-4 | | a/4=3(10/5) | | 4n-5=2.1 | | x+(2/3)x+90=180 | | (9x-6)=(2x+8) | | -14x=-6x-24 | | x+2/3x+90=180 | | 5a+2a-3a=32 | | 2r+8+-r=7 | | 279=-v+234 | | 12x-60=3x-6 | | 2/3(6y-9)=1/2(8y-4) | | -x+285=42 | | 15=x^2+12 | | 5(1+5x)=55 | | 7(-x-2)=-4(x+5) | | 6(x-1)-4(x-2=3 | | -9n-13=-103 | | 5b=24+7b-28 | | x/12=77 | | 196=77-y | | -14x-56=-22x | | 2.3x+1.6x+x-3.6=1.3 | | -12x-17=-101 | | 28x=20x-40 | | -14x+56=-7x+14 | | 11n=92 | | 7x-4=3x+64 | | 1+2b=4b+9 | | x-3x-5x-2x=610312-192 |